Transparent bulk optical components have an unfortunate tendency to stretch out ultrashort laser pulses upon transmission. This effect – also known as group delay dispersion – destroys the carefully designed time-structure of the affected pulses. In this study, we show that precisely shaped silicon nanopillars can achieve the opposite effect, compressing the laser pulses and compensating for the dispersion of other optical elements. The technology is ready to be coated onto abundantly available standard optics to allow their application in the future of ultrafaster femtosecond optics.
It is published in Nature Communications, press release from SEAS Harvard News.
Comments