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Jumping spiders (Salticidae) rely on accurate depth perception
for predation and navigation. They accomplish depth perception,
despite their tiny brains, by using specialized optics. Each principal
eye includes a multitiered retina that simultaneously receives mul-
tiple images with different amounts of defocus, and from these
images, distance is decoded with relatively little computation. We
introduce a compact depth sensor that is inspired by the jumping
spider. It combines metalens optics, which modifies the phase of
incident light at a subwavelength scale, with efficient computa-
tions to measure depth from image defocus. Instead of using a
multitiered retina to transduce multiple simultaneous images, the
sensor uses a metalens to split the light that passes through an
aperture and concurrently form 2 differently defocused images at
distinct regions of a single planar photosensor. We demonstrate a
system that deploys a 3-mm-diameter metalens to measure depth
over a 10-cm distance range, using fewer than 700 floating point
operations per output pixel. Compared with previous passive
depth sensors, our metalens depth sensor is compact, single-shot,
and requires a small amount of computation. This integration of
nanophotonics and efficient computation brings artificial depth
sensing closer to being feasible on millimeter-scale, microwatts
platforms such as microrobots and microsensor networks.
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V isual depth sensors combine cameras, computational algo-
rithms, and sometimes light sources to sense the 3-

dimensional shapes of surrounding objects and scenes. Lidar
systems (1), time-of-flight cameras (2–8), and structured light-
ing systems (9, 10) are examples of depth sensors that use
active light sources, whereas binocular stereo systems (11) and
light-field cameras (12–14) are examples that are passive, rely-
ing solely on the ambient light that happens to be available.
These approaches have found widespread use on autonomous
vehicles, drones, mobile phones, and many other platforms.
However, they require either active lighting or iterative computa-
tion and optimization, and are thus not well suited to low-power
platforms, such as mobile sensor networks and robotic insects
(15–17), which impose much more severe constraints on size,
weight, and power consumption.

Alternative methods that utilize optical defocus to measure
depth have been demonstrated to potentially greatly reduce the
amount of depth computation and require no active lighting (18,
19). These algorithms (18–23) compute depth by comparing 2
differently defocused images of the same scene and produce a
depth map, comprising a depth value at each pixel. However,
one major challenge with this method is the optics. With con-
ventional optical components, capturing 2 differently defocused
images usually requires making physical changes to the optical
system, such as reducing or enlarging its aperture (20, 21, 23)
or deforming its lens (19). This not only adds significant com-
plexity to the system control, but also fundamentally limits the
depth-sensing performance by introducing unwanted delays and
motion artifacts. Some previous algorithms use look-up tables
(20) or iterative methods (22) in their framework to measure
depth. However, these methods are hard to implement in a dif-

ferentiable manner and rely on exhaustive search, instead of
using gradient-based search methods, to determine the required
parameters.

To address these challenges, we introduce the metalens depth
sensor. It is compact, static, single-shot, and requires low com-
putational power. Thanks to the versatile wavefront-shaping
capability of metalenses, ultrathin nanophotonic components
that can tailor arbitrary optical wavefront at a subwavelength
scale, our device can simultaneously capture 2 differently defo-
cused images through the same aperture without having to
make physical changes to the optical system. It avoids the arti-
facts usually incurred by reimaging over time while changing a
camera’s optics and can potentially improve the depth sensor’s
time resolution. Besides, the image-processing algorithm is com-
pletely differentiable, which enables data-driven, gradient-based
calibration of the computational parameters compared to the
nondifferentiable methods (20, 22).

The working principle is inspired by the eyes of jumping
spiders (Salticidae), which use defocus to succeed at sensing
depth, despite the fact that their brains are about as small as
poppy seeds (24). Each of the spider’s principal eyes includes
a specialized structure (25) with stacked translucent retinae
that simultaneously observe the world with different amounts of
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Fig. 1. Jumping spider and metalens depth sensor. (A) Jumping spiders can sense depth using either 1 of their 2 front-facing principal eyes (highlighted).
Unlike the single retina found in human eyes, jumping spiders have multiple retinae that are layered and semitransparent. The layered-retinae structure
can simultaneously measure multiple images of the same scene with different amounts of defocus, and behavioral evidence suggests that spiders measure
depth using the defocus cues that are available in these images (26). (B) The metalens depth sensor estimates depth by mimicking the jumping spider. It uses
a metalens to simultaneously capture 2 images with different defocus, and it uses efficient calculations to produce depth from these images. The jumping
spider’s depth perception operates normally under green light (26), and we similarly designed the metalens to operate at a wavelength of 532 nm. We
coupled the metalens with a spectral filter to limit the spectral bandwidth and with a rectangular aperture to prevent overlap between the 2 adjacent
images. The images depicted on the photosensor were taken from experiments and show 2 fruit flies located at different distances. The corresponding
depth map computed by the sensor is shown on the right, with color used to represent object distance. The closer and farther flies are colored red and blue,
respectively.

optical defocus (Fig. 1A). Behavioral experiments have shown
that the input from 1 principal eye suffices for a jumping spider to
sense depth accurately enough to leap onto prey from distances
of several body lengths and that depth perception can be pre-
dictably manipulated by changing the ambient light spectrum in
a way that distorts the optical defocus (26).

Inspired by the specialized compact optical structure of the
jumping spider’s principal eye, we propose to use metasurface
technology (27–34) to simultaneously collect a pair of differ-
ently defocused images using the 2 halves of a single planar
photosensor (Fig. 1B). Metasurfaces are ultrathin planar optical
components consisting of subwavelength-spaced nanostructures
patterned at an interface (27). By engineering the shape of indi-
vidual nanostructures, one can control the phase, amplitude,
and polarization of the transmitted wavefront at subwavelength
scales, allowing multiple functions to be multiplexed within a sin-
gle device. Metasurfaces have enabled a variety of optical devices
with capabilities that surpass those of conventional refractive
or diffractive elements, ranging from high-performance imag-
ing lenses (metalenses) (29, 35) to novel polarization holograms
(36). In our prototype sensor, we encode 2 complementary lens
phase profiles with distinct focal lengths and lateral offsets on
a shared aperture in a single metalens by spatial multiplexing
(28). In this way, 2 differently defocused images can be captured
simultaneously side by side on the photosensor in a single shot.
We design the metalens focal lengths together using a depth-
reconstruction algorithm, so that accurate depth maps can be
computed from the 2 simultaneous images with calculations that
are spatially localized and few in number—i.e., depth computa-
tions for each image pixel involve only a small spatial neighbor-
hood of pixels and require no additional correspondence search
after initial calibration.

Our prototype produces depth values over a range of 10 cm
from single-shot measurements using a millimeter-scale metal-
ens. Calculating depth at each output pixel of the depth map
requires fewer than 700 floating point operations (FLOPs) and
involves the digitized intensity values in only a 25 × 25 spa-
tial neighborhood of pixels. This integration of nanophotonics
and efficient computation brings artificial depth sensing closer to
being feasible on millimeter-scale, microwatts platforms such as
microrobots and microsensor networks.

Principle
We model the image I (x , y) formed on a photosensor as the
convolution of the camera point spread function (PSF) with the
magnified, all-in-focus object pattern as it would be observed
with a pinhole camera. The camera PSF is the image captured
on the photosensor when the object is a point light source. The
width of the PSF depends on the optics and the distance Z
between the object and the lens. For an ideal thin-lens camera,
depicted in Fig. 2A, the PSF width σ is related to object distance
Z by the thin-lens equation:

σ=

[
(

1

Zf
− 1

Z
)Zs

]
Σ, [1]

where Zs is the distance between the lens and the photosen-
sor, Σ is the radius of the entrance pupil, and Zf is the in-focus
distance—i.e., the distance for which the PSF width σ is equal
to zero. (SI Appendix, section 1.1) On the right side of Eq. 1,
all quantities but the object distance Z are known quantities
determined by the optical system. Thus, for a calibrated camera,
determining the PSF width σ is equivalent to measuring object
distance Z .

The PSF width σ determines the amount of image blur. An
object appears sharp when its distance Z is equal to the in-focus
distance Zf because then the PSF width σ is zero (under ray
optics approximation). Conversely, when the object distance Z
deviates from Zf , the PSF width, σ, is nonzero, and the image is
blurry. Recovering the PSF width (and thus depth) from a sin-
gle blurry image is ill-posed without prior information about the
underlying object pattern. However, when a second image of the
same scene is captured with a different amount of blur, the width
σ can be determined directly from the contrast change between
the 2 images. One way to understand this is to assume that the
PSFs can be approximated as Gaussian functions that depend on
the PSF width σ:

h(x , y) =
1

2πσ2
exp−x2 + y2

2σ2
, [2]

where (x , y) is the pixel position on the photosensor. Gaussian
functions have the property that partial derivatives with respect
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Fig. 2. Operating principle. (A) A conventional thin-lens camera, in which the PSF width σ on the photosensor is determined by the optics and the depth
Z (the object distance) according to the lens equation (Eq. 1). Zs is the distance between the lens and the photosensor. Zf is the in-focus distance. Σ is the
entrance pupil (lens) radius. The solid black curve next to the photosensor represents a vertical cut of the PSF h, which is drawn here with a Gaussian shape.
(B) The metalens depth sensor encodes the phase profiles of 2 thin lenses in 1 aperture. The 2 effective lenses have distinct in-focus distances (Zf+

, Zf− )
(red and blue) and off-axis alignments that create 2 adjacent images (I+, I−) with different PSF widths (σ+,σ−). The effective image centers are shifted
from the optical axis by±D. The dashed red and blue curves next to the metalens show the transmitted wavefronts. Due to spatial multiplexing, the overall
phase profile is highly discontinuous and therefore cannot be easily achieved with conventional (Fresnel) diffractive optical elements. (C) From a pair of
input images (I+, I−), a small set of calculations was used to produce the depth at each pixel across the image, generating a depth map Z(x, y) according
to Eq. 5. A confidence map C(x, y) that indicates the precision of the depth prediction at each pixel was computed alongside, according to Eq. 6. The
computation flows from left to right, beginning with the per-pixel mean I = 1

2 (I+ + I−) and difference δI = I+− I−; Laplacian of the average image ∇2I
computed by convolving the average image with a discrete Laplacian filter; and convolution with a band-pass filter F to attenuate noise and vignetting. From
F *∇

2I and F * δI, the depth and confidence map Z and C were computed by Eqs. 5 and 6. Parameters α, β, γ1, γ2, and γ3 were determined by the optics
and were precalibrated. To eliminate large errors in the depth map, we thresholded it by showing only pixels with confidence values greater than 0.5.

to width σ and location (x , y) satisfy

1

σ

∂h(x , y)

∂σ
= (∂2

x + ∂2
y )h(x , y)≡∇2h(x , y), [3]

and because the defocused image I (x , y) is the convolution of
the PSF and the all-in-focus object pattern (which does not
depend on σ), the same relationship between derivatives applies
to the captured image:

1

σ

∂I (x , y)

∂σ
=∇2I (x , y). [4]

Eq. 4 indicates that σ (and thus depth Z through Eq. 1) can
be determined directly from the spatial Laplacian of the image
∇2I (x , y) and the differential change of intensity with respect to
varying PSF width ∂I (x ,y)

∂σ
(18, 19). The latter can be estimated

via a finite difference, i.e., ∂I (x ,y)
∂σ

≈ δI (x ,y)
δσ

, where δI (x , y) is the
change of image intensity induced by a small, known variation
of the PSF width (δσ). According to Eq. 1, since in general no
control can be made over the object distance Z , the only way to

change the PSF width σ when shooting an object is to vary the
parameters of the optical system, such as the sensor distance Zs

or the in-focus distance Zf .
A jumping spider’s principal eye can use its transparent lay-

ered retinae to simultaneously measure the (minimally) 2 images
that are required to compute the finite difference δI (x , y)
(Fig. 1A) because these retinae effectively capture images with
different sensor distances Zs . In contrast, we design a met-
alens that generates 2 images (I+(x , y), I−(x , y)) side by
side (Fig. 1B), with the images being equivalent to images
that are captured with different in-focus distances (Zf+ , Zf−)
through the same pupil. We design the in-focus distances so
that the difference in blur between the images, δσ=σ+−σ−=
ΣZs(

1
Zf+
− 1

Zf−
), is small and approximately differential. From

these 2 images (Fig. 2 C, Left), we compute the per-pixel dif-
ference δI (x , y) = I+(x , y)− I−(x , y) and the image Laplacian
∇2I (x , y). The latter is obtained by convolving the averaged
image I (x , y) = 1

2
(I+(x , y) + I−(x , y)) with a Laplacian filter,

denoted ∇2(x , y). To reduce the effects of sensor noise and
optical nonidealities like vignetting, δI (x , y) and ∇2I (x , y) are
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spatially convolved with a purposefully designed linear filter
F (x , y). To the lowest order, the filter F (x , y) is similar to
a Gaussian filter that averages over neighboring pixels (SI
Appendix, sections 1.3 and 2.2). The filtered results F (x , y) ∗
δI (x , y) and F (x , y) ∗∇2I (x , y) are shown in Fig. 2 C, Center.
Finally, we combine Eqs. 1 and 4 to calculate the depth Z at each
pixel (x , y):

Z (x , y) =

(
α+β

F (x , y) ∗ δI (x , y)

F (x , y) ∗∇2I (x , y)

)−1

, [5]

with α= 1
2
( 1
Zf+

+ 1
Zf−

) and β=−(ΣZsδσ)−1 being constants

that are determined by the optics. The correctness of Eq. 5 fol-
lows from the fact that Eq. 4 still holds when values δI (x , y)
and ∇2I (x , y) are replaced by their filtered versions F (x , y) ∗
δI (x , y) and F (x , y) ∗∇2I (x , y).

In practice, even with filtering, random noise in the captured
images (I+(x , y), I−(x , y)) results in errors in the measured
depth Z (x , y). The error can be quantified in terms of the SD
of the measured depth at each pixel, which can be approximated
by the measurable quantity

sZ (x , y)= |γ1|F (x , y) ∗ δI (x , y)|
+ γ2|F (x , y) ∗∇2I (x , y)|−1 + γ3

∣∣ , [6]

with constants γ1, γ2, γ3 that are determined by the optics (SI
Appendix, section 1.2). This measurable quantity sZ (x , y) can
serve as an indicator of the reliability of the measured depth
Z (x , y) at each pixel (x , y). For convenience, we normalize the
values of sZ (x , y) to the range (0, 1) and define this normalized
value as the confidence C (x , y). A higher confidence value C at
pixel location (x , y) indicates a smaller value of sZ and a more
accurate depth measurement Z (SI Appendix, section 1.2). Physi-
cally, the confidence C (x , y) characterizes the expected accuracy
of the measurement at each pixel (x , y): A larger confidence
value C (x , y) at a pixel indicates a statistically smaller error in
the depth measurement.

Since Eq. 5 calculates depth using simple, local calculations,
it fails in regions of the images that have uniform intensity and
thus no measurable contrast for δI (x , y) and ∇2I (x , y). To
automatically identify the locations of these failures, we use the
confidence score C (x , y) as a criterion, and we report depth only

at pixels (x , y) whose confidence is above a certain threshold.
The choice of confidence threshold affects the depth resolu-
tion, which we define as the smallest depth difference that can
be resolved within a certain confidence range. In this paper,
with a confidence threshold of 0.5, we achieve a depth resolu-
tion of about 5% of the object distance over the distance range
[0.3m, 0.4m] (see Fig. 4B).

The complete sequence of calculations for the depth map and
confidence map is depicted in Fig. 2C. For visualization, the
depth map is thresholded by confidence to show only the depth
at pixels where the latter is greater than 0.5.

Metalens Design and Characterization
The metalens is designed to incorporate phase profiles of 2 off-
axis lenses with different in-focus distances on a shared aperture.
For each off-axis lens, the required phase profile is an offset con-
vex shape determined by in-focus distances (Zf+ ,Zf−), sensor
distance Zs , and transverse displacement of the image center±D
(Fig. 2B):

φ±(x , y) =−2π

λ

(√
x2 + y2 +Z 2

f±
+
√

x2 + (y ∓D)2 +Z 2
s

−
√

D2 +Z 2
s −Zf±

)
. [7]

Here, (x , y) indicates location on the metalens. The overall
phase profile is achieved by spatially interleaving the 2, φ+(x , y)
and φ−(x , y), on the metalens at a subwavelength scale. The
design specifications are in SI Appendix, section 2.1.

The required phase profile can be wrapped to [0, 2π] (i.e.,
modulo 2π) without changing its functionality. Therefore, the
key requirement for precise wavefront shaping is to control
locally the phase between 0 and 2π. Here, we use titanium diox-
ide (TiO2) nanopillars as the building blocks for local phase
control. Physically, the nanopillars function as truncated wave-
guides and impart a phase shift to the transmitted light. By vary-
ing the pillar width, one can tune their effective refractive index,
and thus the phase shift. Fig. 3A shows that by changing the pil-
lar width (W ) from 90 to 190 nm, one can achieve 0 to 2π phase
coverage, while maintaining a high transmission efficiency. The
nanopillars have a uniform height (H ) of 600 nm and can be
fabricated with a single-step lithography. The center-to-center
distance (U ) between the neighboring nanopillars is 230 nm,

Fig. 3. Metalens design. (A) Transmission efficiency and phase shift as a function of the nanopillar width. A, Inset shows the schematic of the metalens
building block: a square titanium dioxide (TiO2) nanopillar on a glass substrate. Pillar height: H = 600 nm. Lattice unit cell size (center-to-center distance
between neighboring nanopillars): U = 230 nm. By varying the pillar width (W) from 90 to 190 nm, the phase shift changes from 0 to 2π, and the transmission
remains high. (B) Top-view SEM image of the right portion of a fabricated metalens. (Scale bar: 2 µm.) (C) Enlarged view of the highlighted region in B, with
nanopillars corresponding to the 2 lens-phase profiles marked with red and blue. (Scale bar: 500 nm.) (D) Side-view SEM image of the edge of the metalens
showing that the nanopillars have vertical sidewalls. (Scale bar: 200 nm.)
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smaller than half the operating wavelength. This allows us to
spatially interleave different phase profiles at a subwavelength
scale, which is essential to eliminating unwanted higher-order
diffractions.

The metalens is fabricated with a technique demonstrated by
Devlin et al. (34). Fig. 3 B–D show the scanning electron micro-
scope (SEM) images of a fabricated sample. The location of the
imaged area on the metalens is in SI Appendix, Fig. S6. The
phase wrapping introduces a discontinuity at locations where
the phase profile equals an integer number of 2π—i.e., the
“zone” boundaries. This corresponds to an abrupt change of
nanopillar arrangement, as shown in Fig. 3 B–D. The phase
profiles of 2 off-axis lenses have different zone spacing and ori-
entation, corresponding to the 2 nearly vertical boundaries and
the diagonal boundary, respectively (Fig. 3B and SI Appendix,
Fig. S6). The spatial multiplexing scheme is illustrated explic-
itly in Fig. 3C, with nanopillars belonging to different focusing
profiles highlighted in different colors.

Results
We built a prototype metalens depth sensor by coupling the met-
alens with off-the-shelf components. The sensor’s current size,
including mechanical components such as optical mounts, is 4 ×
4 × 10 cm, but since the metalens is only 3 mm in diameter, the
overall size of the assembled sensor could be reduced substan-
tially with a purpose-built photosensor and housing. We paired
a 10-nm bandpass filter with the metalens, which is designed
for monochromatic operation at 532 nm. A rectangular aper-
ture was placed in front of the metalens to limit the field of
view and prevent the 2 images from overlapping. The blur change
between the 2 images can be seen in Fig. 4A, which shows PSFs
for each of the 2 images [I+(x , y), I−(x , y)] that were mea-
sured by using a green light-emitting diode (LED) mated to a
10-µm-diameter pinhole and placed at different depths Z along
the optical axis. The PSFs are more disc-like than Gaussian, and
they are asymmetric due to off-axis chromatic aberration. (SI
Appendix, Fig. S8 shows that this asymmetry disappears under
monochromatic laser illumination.)

To suppress the effects of noise and imaging artifacts in images
(I+, I−), and to increase the number of high-confidence pixels

in the output maps, we computed 9 separate depth and confi-
dence maps using 9 instances of Eqs. 5 and 6 that have distinct
and complementary spatial filters Fi , and then we fused these 9
“channels” into 1. We also designed a calibration procedure that
tuned the parameters simultaneously, using back-propagation
and gradient descent (SI Appendix, section 3). In addition to
being user-friendly, this end-to-end calibration has the effect of
adapting the computation to the shapes of the metalens PSFs,
which differ substantially from Gaussians.

To analyze the depth accuracy, we measured the depths of test
objects at a series of known distances and compared them with
the true object distances. The test objects were textured planes
oriented parallel to the lens plane. At each object distance, the
mean deviation of depth, meanx ,y |Z (x , y)−meanx ,yZ (x , y)|,
was computed by using pixels (x , y) that have confidence val-
ues greater than a threshold. Fig. 4B shows the measured depth
for different confidence thresholds as a function of object dis-
tance. For a confidence threshold of 0.5, the measured depth
was accurate to within a mean deviation below or around 5%
of the true depth, over a range of true object distances between
0.3 and 0.4 m. Beyond this range, the measured depth defaulted
to the extreme depth value that the system can predict, as indi-
cated by plateaus on the left and right ends. This indicated that
the 2 images were so blurry that there was an insufficient contrast
difference between them.

Fig. 5 shows depth maps for a variety of scenes. Because it
uses a single shot, the metalens depth sensor can measure objects
that move, such as the fruit flies and water stream in Fig. 5 A
and B. It can also measure the depth of translucent entities,
such as the candle flames of Fig. 5C, that cannot typically be
measured by using active sensors like Lidar and time-of-flight.
Fig. 5D shows a slanted plane with printed text, where the blur
change between the 2 images is particularly apparent. In gen-
eral, the sensor reports a larger number of depth measurements
near regions with edges and texture, whereas regions with uni-
form intensity and low contrast are typically discarded as having
low confidence values. Note that the blur differences between I+
and I− are visually apparent in Fig. 5 A, B, and D, but that the
system still succeeds in Fig. 5C, where the differences in blur are
hard to discern.

Fig. 4. Performance analysis. (A) PSFs corresponding to the 2 images (I+, I−), measured by using green LED point light sources placed at different distances
Z in front of the metalens. A spectral filter was used to limit the light bandwidth (10-nm bandwidth centered at 532 nm). The asymmetry in the PSFs results
from chromatic aberration and can be eliminated by using a monochromatic laser source (SI Appendix, Fig. S8). (B) Depth Z measured by the metalens sensor
as a function of known object distance. Different colors correspond to different confidence thresholds. The solid curves are the mean Z̄ of the measured
depth over many different object points that are located at the same known distance. The upper and lower boundaries of the shaded regions are the
corresponding mean deviations of measured depth |Z− Z̄|. In obtaining both Z̄ and |Z− Z̄|, only pixels whose confidence values are above the threshold
are counted. The mean deviation is thus smaller for larger confidence threshold. The solid black line represents the ideal depth measurements (i.e., those
equal to the known distances), and the dashed black lines represent±5% relative differences between the measured depth and the known object distance.
Within the distance range of 0.3 to 0.4 m, the measured depth is close to the ideal measurements. The mean deviation over this range is around 5% of the
object distances, for a confidence threshold of 0.5. Beyond this range, the measured depth trends toward constant values that do not depend on object
distance, as indicated by plateaus on the left and right. At these distances, the captured images I+, I− are too blurry to provide useful contrast information
for the depth measurement.
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Fig. 5. Input images and output depth maps. The sensor produces real-time depth and confidence maps of 400 × 400 pixels at >100 frames per second.
(A and B) It can measure fast-moving objects such as fruit flies (A) and water streams (B) because the 2 images (I+, I−) are captured in a single shot instead
of sequentially over time. (B and C) It can also measure translucent structures such as water streams (B) and flames (C) because it relies only on ambient
light instead of reflections from a controlled light source. (D) A slanted plane with text expresses the difference in defocus between the 2 images (I+, I−).
Color bar is in meters. The images and depth map for scenes A, B, and D were produced by illuminating the scenes with a green LED. Depth maps were
thresholded at confidence greater than 0.5, which is the threshold that yields a mean deviation of about 5% of object distance between 0.3 and 0.4 m in
Fig. 4B. Additional images and videos are available in SI Appendix.

For scenes other than Fig. 5C, we used green LED light
sources, and the overall transmission efficiency of the metalens
plus the bandpass filter was around 15%. For sunlight illumi-
nation, the bandpass filter transmitted around 4% of the visible
light of the solar spectrum. The absolute irradiance that supports
the function of the sensor varied based on the sensitivity of the
photosensor that was used and can be estimated from specifica-
tions including absolute sensitivity threshold, dynamic range, etc.
For our experimental setup, the irradiance at the aperture was
estimated to be between 0.3 and 0.5 W/m2 within the working
bandwidth to support the function of the sensor.

The sensor generates depth and confidence maps of 400×400
pixels at more than 100 frames per second using a combined cen-
tral processing unit and graphics processing unit (Intel i5 8500k
and NVIDIA TITAN V). It could be accelerated substantially
by optimizing the code and/or the hardware because the cal-

culations are spatially localized and few in number. Producing
the depth and confidence values at each output pixel required
637 FLOPs and involved only the 25 × 25 surrounding pixels.
For context, an efficient implementation of a binocular stereo
algorithm requires about 7,000 FLOPs per output pixel (37),
and a system-on-chip implementation of the well-known Lucas–
Kanade optical flow algorithm (with spatial dependence similar
to that of our sensor) requires over 2,500 FLOPs per pixel (38).

Discussion
The metalens depth sensor inherits some of the limitations that
exist in the vision system of jumping spiders, such as a limited
spectral bandwidth and a limited field of view. However, these
limits are not fundamental, and they can be alleviated by more
sophisticated metalens designs. The spectral bandwidth can be
expanded by using achromatic metalenses (35, 39, 40), which
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also improve light efficiency. The field of view can be improved,
for example, by using metalens nanopillars that are sensitive
to polarization to induce 2 differently focused images that are
superimposed on the sensor plane with orthogonal polarizations
(36) and then transducing the 2 images with a spatially multi-
plexed, polarization-sensitive sensor array. This would effectively
trade spatial resolution and light efficiency for an increase in field
of view.

The proposed computational algorithm produces a dense field
of depth estimates that are each associated with a confidence
value. The confidence is essential for the users of the depth sen-
sor to remove unreliable predictions. It also uses a multiscale
filtering approach to handle image textures at different spatial
frequency and takes advantage of the confidence to merge all dif-
ferent spatial scales together, compared to previous methods (20,
22) that only use filters at a single, predetermined spatial scale.
The proposed algorithm does not incorporate inference-based
methods such as Markov random fields (MRFs) or conditional
random fields (CRFs) that could exploit longer-range coherence
between depth values across the field of view. Instead, the depth
and confidence estimations at each pixel are only based on infor-
mation of its spatial neighborhood. The advantages of this design
choice are flexibility and generality. For tasks that require high
speeds, the output can be used as-is, with simple thresholding
of confidence values. For tasks that require higher accuracy and
fewer holes in the depth map, the current output can be fed into

an MRF/CRF (or any other spatial regularizer) that is appropri-
ate for that task. Moreover, because the pipeline is end-to-end
differentiable, its parameters can be fine-tuned in conjunction
with MRF/CRF parameters to optimize performance on the
specific task.

By combining cutting-edge nanotechnology and computer
vision algorithms, this work introduces a passive snapshot depth
sensor that mimics some of the capabilities of a jumping spi-
der. The sensor’s small volume, weight, and computation (i.e.,
power) bring depth-sensing capabilities closer to being feasible
on insect-scale platforms, such as microrobots, ingestible devices,
far-flung sensor networks, and small wearable devices. Com-
binations of nanophotonics and efficient computation that are
different from the ones in this paper might lead to other forms of
compact visual sensors, and this is an area that remains relatively
unexplored (41).
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