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ABSTRACT Model-based optical proximity correction (OPC) is a widely adopted resolution enhancement
technique that compensates for lithography proximity effects by adjusting and correcting mask pattern
shapes. However, its application to large-area, high-density patterns such as metasurfaces is constrained
by the computational demands of image calculation in the lithographic model. This paper introduces an
intelligent proximity correction (IPC) system that leverages a deep-learning U-net-based lithographic model
to optimize mask designs through iterative algorithms. By eliminating the need for optical calculations
while maintaining accurate predictions of photoresist contours directly from mask patterns, the intelligent
lithography model demonstrated a 3-fold reduction in simulation time compared to conventional optical
models. Overall the IPC system with parallel computation achieves a remarkable 35-fold speed increase
compared to conventional OPC approaches without compromising correction accuracy. Experimental results
demonstrate that IPC is effective in fabricating high-efficiency, large-area metalenses and metasurface
holograms for the visible wavelength using KrF photolithography, opening possibilities to produce complex,
large-scale metasurfaces for various applications in optics and photonics.

INDEX TERMS Metasurface, photolithography, optical proximity correction, deep-learning, U-net.

I. INTRODUCTION
Metasurfaces have emerged as a revolutionary technology in
optics, offering abilities to manipulate light with unprece-
dented control using subwavelength structures [1], [2], [3],
[4], [5]. These flat optical components aim to replace bulky,
conventional optical elements with ultra-thin, lightweight
alternatives that can be mass-produced using standard semi-
conductor fabrication techniques [6], [7], [8], [9]. However,
realizing large-area, high-performance metasurfaces using
economical photolithography techniques such as i-line step-
pers or KrF scanners remains challenging due to lithographic
proximity effect [10], [11]. Optical proximity correction

The associate editor coordinating the review of this manuscript and

approving it for publication was Qi Luo .

(OPC) that can mitigate diffraction effects and improve
pattern fidelity by adjusting mask pattern shapes has been
widely adopted in semiconductor industry [12], [13]. How-
ever, conventional OPC methods require complex optical
image calculation due to partially coherent illumination
systems, which have become prohibitively time-consuming
and computationally expensive for large-area, high-density
patterns such as metasurfaces [14], [15].

Recent advancements in deep learning have opened new
avenues for enhancing lithographic processes [16], [17],
[18], [19]. In particular, the application of neural networks
to model and predict end patterns from the initial design
has shown promise in improving both accuracy and compu-
tational efficiency [20], [21], [22], [23]. Building on these
developments, this paper introduces an intelligent proximity
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correction (IPC) system that leverages deep-learning neural
networks to enable the fabrication of high efficiency and
large-area metalens and metasurfaces in the visible wave-
length range using KrF photolithography.

Our IPC system utilizes a U-net–based lithographic sur-
rogate embedded directly into the iterative correction loop,
rather than serving only as a forward predictor as in prior
ML studies. By removing the need for conventional optical
simulations while still providing accurate photoresist con-
tour predictions, the system achieves 3× faster convergence
compared to our previous optical model [24], and ∼35×
faster than conventional OPC without parallelization, all
while preserving pattern fidelity. This approach allows for the
correction of much larger metasurface designs within prac-
tical timeframes, opening the door to fabricating large-area,
high-performance metasurfaces using economical exposure
systems.

In this paper, we first describe the development and
implementation of our IPC system and its integration with
KrF photolithography. We then demonstrate the system effi-
cacy through the fabrication of metasurface holograms and
metalenses, validating both design fidelity and large-area
scalability. A detailed comparison with a previously reported
OPC technique is presented, showing that the proposed IPC
approach achieves substantial improvements in correction
speed, accuracy, and practicality for wafer-scale metasurface
manufacturing.

II. EXPERIMENTAL METHOD
A. THE IPC SYSTEM
The workflow of the IPC system is illustrated in Figure 1(a),
showing the iterative process of refining photomask designs
for improved pattern fidelity. The process begins with an ini-
tial mask pattern, processed through a neural-network-based
lithographic model to simulate the developed photoresist
patterns, namely, the resist image. This resist image is then
compared to the desired target pattern to evaluate the dif-
ferences of contour positions at the evaluation points, which
is called the edge placement error (EPE). If a mismatch is
identified, the system adjusts the mask boundaries accord-
ingly to minimize the EPE for all evaluation points. These
adjustments continue until the resist image closely matches
the target pattern. The program terminates when the average
EPE falls below one pixel.

The IPC system employs a U-net neural network for
lithographic pattern transfer modeling [25], [26], as illus-
trated in Figure 1(b). The network architecture comprises an
encoder-decoder framework that maps input photomask pat-
terns to their corresponding photoresist outcomes following
exposure and development processes. The encoder pathway
consists of cascaded convolutional layers integrated with
the max pooling operations and rectified linear unit (ReLU)
activation functions. This configuration enables hierarchi-
cal feature extraction while progressively reducing spatial
dimensions. The decoder pathway employs up-sampling

operations with convolutional and ReLU layers to reconstruct
the output dimensions. Skip connections between corre-
sponding encoder and decoder layers facilitate the integration
of multi-scale features, thereby enabling precise reconstruc-
tion of photoresist patterns. The detailed U-net model archi-
tecture can be found in the supporting information (Table S1).

The model training and validation processes involve using
an experimental dataset comprising 5152 pairs of pho-
tomask and photoresist patterns. Photoresist patterns were
acquired via scanning electron microscopy (SEM) at 4k res-
olution (4096× 3775 pixels). Subsequently, the images were
partitioned into 512 pixel ×512 pixel segments. Data aug-
mentation via translation and rotation operations yields the
final dataset of 5152 image pairs. The dataset was subdivided
with 3864 pairs (75%) allocated to training and 1288 pairs
(25%) to validation. Before network input, all images under-
went normalization to the range [0, 1]. Network training
was executed with a batch size 32, constrained by available
GPU memory capacity. The training process continued for
500, 1000, 1500, and 2000 epochs respectively to achieve
convergence, where the mean square error (MSE) was used
as the model loss function.

FIGURE 1. (a) The proposed intelligent proximity correction (IPC) system.
(b) The IPC lithographic model structure. (c) The OPC lithographic model
incorporates the optical aerial image calculation and a fully convolutional
network (FCN) resist model.

The performance of the proposed IPC system is bench-
marked against our in-house OPC method using the litho-
graphic model detailed in [24], where the litho-model
performs the photomask to photoresist transformation
through two stages: optical simulation and photoresist mod-
eling (Fig. 1(c)). The optical stage calculates the optical
intensity distribution on the wafer, known as the aerial image,
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using Hopkin’s formulation. The photoresist stage then uses
a fully convolutional network (FCN) to learn the photore-
sist behavior in response to the aerial image. The detailed
FCN model architecture is provided in the supporting infor-
mation (Table S2). We refer to this lithographic model as
the FCN model hereafter. For a fair comparison, the FCN
model exploits the same dataset as the U-net model. The
photomask images are convoluted with the optical kernels
corresponding to the KrF scanner settings to prepare the
aerial image and resist image pairs for training and validation.
Table 1 compares the FCN and U-Net models in terms of
parameter counts, prediction time, and memory usage for a
4096 × 4096 pixel tile. Benchmarks were performed on a
12th Gen Intel® Core™ i9-12900K@3.20GHz, 16-core, x64
workstation. The U-Net model achieves substantially lower
prediction time and memory usage compared to the FCN
baseline.

TABLE 1. Comparison of FCN and U-Net models for lithographic
modeling.

The well-trained lithography model is integrated into the
IPC system for fast and accurate photomask correction. The
IPC system first divides a large input photomask pattern
into main tiles of 3584 × 3584 pixels. To mitigate stitch-
ing errors, each main region is appended with a 512-pixel
ambient margin, resulting in an IPC template size of 4096 ×

4096 pixels. This ambient overlap ensures that stitching arti-
facts are effectively suppressed when the corrected main
tiles are reassembled. A message passing interface- (MPI)
based framework distributes these tiles in parallel to the pro-
cessing nodes of a supercomputer. On each node, the U-net
model predicts the printed photoresist pattern corresponding
to the mask tile and feedback to the correction algorithm to
adjust the mask tile accordingly. Once all tiles are corrected,
the main region of all tiles are stitched back to reconstruct
the fully optimized mask pattern. The IPC system employs
11 computing nodes fromTaiwania-3, allowing a 2mm diam-
eter metalens mask to be corrected within 2.5 hour compared
to weeks for the previous OPC framework. The combination
of simulation speedups from ML-based lithography models
with parallel processing ofmask optimization in IPC provides

a promising avenue to unlock economical nano-fabrication
capabilities for large-scale metasurfaces.

B. METASURFACE DESIGN AND FABRICATION
The metasurfaces comprise silicon nitrides (SiNx) nano-
cylinder arrays fabricated on 0.7 mm thick glass wafers. Each
nano-cylinder functions as an antenna, imparting an engi-
neered phase shift within a square lattice arrangement. At the
operating wavelength of 532 nm, the PECVD SiNx used in
this study has a refractive index (n) of 2.17 and an extinc-
tion coefficient (k) of 0.000998. Using commercial rigorous
coupled-wave analysis (RCWA) implementation, we simu-
lated the transmittance and phase shifts of electromagnetic
fields passing through nano-cylinders with varying diameters
and heights (Fig. 2(a) and 2(b)). The final design employs
nano-cylinders with diameters ranging from 100-256 nm, a
457 nmpitch, and 585 nmheight for 532 nmwavelength oper-
ation, achieving high transmission and nearly complete 2π
phase coverage (Fig. 2(c)). This cell library enables the design
of various metasurfaces, including focusing lenses and phase-
only computer-generated holograms (CGHs) though the local
periodic approximation (LPA). This approximation is gen-
erally valid when the nanopillar geometry and filling ratio
vary gradually across the device. Under these conditions,
each pillar can be treated as imparting a local phase delay
through its effective mode profile, while inter-pillar coupling
effects remain limited [27]. Prior studies have reported good
agreement between LPA predictions and full-wave Maxwell
solvers even for rapidly varying aperiodic patterns [28].

Here, we demonstrate ideal metalens designs with
0.1 numerical aperture (NA) and various lens diameters. The
focusing profile from a scaled 40 µm-diameter metalens cal-
culated using finite difference time domain (FDTD) followed
by beam propagation method (BPM) for free space propa-
gation. The simulated focal length was 191 µm with 64.0%
absolute focusing efficiency (Fig. 2(d)). For CGH designs
to project customized patterns in the far field, we imple-
mented a modified Gerchberg-Saxton (GS) algorithm, which
incorporates gradient descent optimization of intensity error
to iteratively refine the phase estimation to meet the design
target [29], [30], [31].

The metalens and metasurface devices are fabricated
through KrF photolithography with a 6-inch chrome-on-
glass binary mask at the Taiwan Semiconductor Research
Institute (TSRI). The process began with an 8-inch glass
wafer coated with 500 nm aluminum (Al) and silicon
oxides (SiOx) layers on the rear for glass wafer regis-
tration and protection respectively. A 585 nm thick SiNx
layer was deposited via Plasma Enhanced Chemical Vapor
Deposition (PECVD) on the front, followed by a 120 nm
tantalum (Ta) layer as the etch mask via Physical Vapor
Deposition (PVD). Using a Tokyo Electron TRACK-ACT8
system, a back anti-reflection coating (BARC) and photore-
sist (CARD, GKR-5201A) were spin-coated and soft-baked.
The pattern was exposed using a Canon FPA-6300ES6a
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FIGURE 2. Design of metalens and metasurface hologram for the 532 nm
wavelength. The simulated (a) transmission and (b) phase map as a
function of the nano-cylinder heights and diameters at the 457 nm pitch.
(c) The transmission and phase of the chosen cell library with a square
lattice arrangement, where the height is 585 nm the diameters varying
between 120 nm to 256 nm. (d) The simulated focusing profile of a scaled
metalens design with NA=0.1 from cell library in (c). The diameter is
40 µm and the simulated focal length results is 191 µm.

KrF DUV scanner, followed by post-exposure bake (120◦C,
90s), development, and hard bake (110◦C, 60s). The pho-
toresist pattern was transferred to the Ta mask via reac-
tive ion beam etching, and after organic residue removal,
SiNx nano-cylinders were etched using SF6/O2 gas mixture
(40/10 sccm) in a Lam 2300 KIYO system. The Ta mask and
Al layer were removed using H2SO4/H2O2 mixture at 120◦C
for 15 minutes. High-resolution SEM was used to capture
and analyze the distribution and dimensions of photoresist
patterns and nanostructured pillars.

C. CHARACTERIZATION
The optical performance of the fabricated metalens is char-
acterized using a broadband NKT SuperK white light laser,
spectrally filtered by a 532 nm bandpass filter to isolate
the green wavelength. The filtered beam undergoes beam
expansion and an iris diaphragm to a diameter approximately
half that of the metalens to ensure uniform illumination.
To capture the focusing profile, a beam collection sys-
tem comprising a 10× Plan APO broadband objective lens
(NA = 0.26) and an M-LH-1A tube lens (focal length =

200 mm) was employed. The entire imaging system was
mounted on a motorized translation stage for axial scanning.
The intensity distribution at the focal plane and along the opti-
cal axis is recorded using aMicroPublisher 6™CCD scientific
camera, with image acquisition and processing performed on
a personal computer.

For quantitative assessment, the focusing and diffraction
efficiencies were measured by first determining the inci-
dent beam power without the sample. The absolute focusing

efficiency was then calculated as the ratio of the integrated
optical power within six times the full width at half maximum
(FWHM), corresponding to the detection area of our power
meter, at the focal plane to the total incident power [32].

III. RESULTS AND DISCUSSION
We first evaluate the resist image prediction performance
of the U-net and FCN models. The target nano-cylinder
diameter, representing the desired critical dimension (CD),
is compared with the predicted CD, which is extracted by
approximating the nano-cylinder area as a perfect circle.
Fig. 3(a) presents the average and worst-case 1CD/CD
errors (%) for U-net (red) and FCN (blue) over various
training epochs. At 1500 epochs, the U-net model achieves
optimal performance, with an average error of 0.2% and
a worst-case error of 3.6%. In contrast, the FCN model
yields an average error of 1.1% and a worst-case error of
8.0%. Extending training to 2000 epochs slightly improves
FCN convergence but does not enhance U-net performance
probably due to overfitting.

The error distribution at 1500 epochs is illustrated in
Fig. 3(b), which shows a histogram of 1CD/CD (%) across
approximately 8,000 nano-cylinders in the validation dataset.
The predictions of the U-net model are mostly within a 2%
error margin, while the FCN model shows a broader distribu-
tion with average errors approaching 5%, indicating excellent
fitting and convergence of the U-net model on this dataset.

Fig. 3(c) highlights the worst-case predictions from both
models. The U-net output (bottom) closely resembles the
target pattern, whereas the FCN prediction (top) shows
noticeable deviations. A summary of the training and vali-
dation results at 1500 epochs, including average and worst
1CD/CD values, is provided in Table 2.

TABLE 2. Model training result and generalization comparison.

We next evaluate the fabricated nano-pillar structures of
the 2 mm-diameter metalenses after pattern transfer and etch-
ing processes. Figure 4(a) shows the top-view SEM image
of the etched structures without any mask correction. Evi-
dently, nano-cylinders with small feature sizes failed to stand
upright, resulting in significant pillar collapse. Figures 4(b)
and 4(c) show the etched results using mask corrections
generated by the FCN and U-net models, respectively. In both
cases, the smallest nano-cylinders with a feature size near
the resolution limit remain well-resolved even when adja-
cent to large features, demonstrating the effectiveness of
model-based mask correction in extending process latitude.

Figure 4(d) presents cross-sectional SEM images of the
SiNx pillars fabricated using the FCN-based OPC approach
and the U-net-based IPC approach. Both small and large
pillars exhibit measured heights of approximately 589nm,

195520 VOLUME 13, 2025



H.-L. Liu et al.: IPC Enabled Large-Area Metasurfaces by KrF Photolithography

FIGURE 3. Prediction performance comparison between U-net and FCN
lithographic models. (a) CD/CD error distributions across 1288 testing
image pairs after 1500 training epochs. (b) Worst predictions with
differences from target patterns for FCN (upper) and U-net (lower)
models; scale: 1 µm. (c) Average and worst CD/CD errors versus training
epochs.

closelymatching the designed height of 585nm and the small-
est pillar achieves an aspect ratio approaching 1:6. We have
evaluated nanocolumn stability within the entire metasurface
region. Before OPC, the collapse rate of nanocolumns was
34.5%; after applying the IPC, the collapse rate was reduced
to 0%, demonstrating a substantial improvement in structural
yield.

Figure 4(e) analyzes the correlation between the designed
and experimentally measured CDs of the nano-cylinders.
In the non-OPC case, a steep slope ∼1.7 indicates poor CD
control, such that small features are not resolved. In contrast,
both OPC and IPC layouts demonstrate improved CD linear-
ity, with slope values approaching unity (∼1.1). However,
process variations in etching and pattern transfer results in
CD deviations from the target values (dashed line). Overall,
the average CD distribution in the OPC layout (blue dots,
Fig. 4(e)) closely matches the target values, with less than
10 nm deviation for small features. The IPC layout also
follows the target closely (red squares, Fig. 4(e)) with slightly
larger deviations for the large pillars. These results demon-
strate that the IPC approach achieves excellent CD control
comparable to the OPC, enhancing the fidelity of metalens
fabrication.

The focusing characteristics of three 2mm-diameter met-
alenses with 0.1 NA are presented in Fig.5: (a) without

FIGURE 4. Top-view SEM images of the 2mm-diameter metalens patterns:
(a) Non-OPC result, showing significant collapse of small-feature pillars;
(b) OPC approach with the FCN model; and (c) IPC approach with the
U-net model. All scale bars: 4µm. (d) Cross-sectional SEM images of the
largest and smallest SiNx nano-cylinders fabricated with OPC (FCN)
approach (top), and IPC (U-net) approach (bottom), showing consistent
heights and demonstrating enhanced process latitude in a single
exposure. Scale bar: 600nm. (e) Correlation analysis between designed
and experimentally measured critical dimensions (CDs) of nano-cylinders,
comparing non-OPC, OPC, and IPC approaches.

OPC, (b) with OPC using the FCN model, and (c) with IPC
using the U-net model. For each case, the focusing spot,
axial intensity profile, and corresponding modulation transfer
function (MTF) are shown from left to right, respectively.
All three metalenses exhibit clear focusing behavior with a
measured focal length of approximately 10.0 mm, closely
matching the design specification of 9.9 mm. Although the
non-OPC metalens shows substantial CD deviations and fails
to resolve small features due to proximity effects, it still
retains basic focusing capability. However, the focal spot
size is significantly larger than those achieved with model-
based corrections, and its absolute focusing efficiency is
considerably lower.

The focal spot sizes, determined by the FWHM, are mea-
sured to be approximately 5.3 µm for both OPC (FCN) and
IPC (U-net) metalenses which closely match the theoretical
diffraction-limited value of 4.6 µm. In contrast, the non-OPC
metalens exhibits a significantly larger FWHM of ∼7.1 µm,
highlighting the strong correlation between pattern fidelity
and optical performance. The performance improvement with
photomask correction is further supported by the modula-
tion transfer function (MTF) analysis. The calculated Strehl
ratios—defined as the ratio of the integrated area under the
measured MTF to that of the ideal diffraction-limited MTF—
are 0.64 for the non-OPC, 0.95 for the OPC, and 0.93 for the
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FIGURE 5. The Focusing performance of 2 mm-diameter metalenses:
(a) without OPC, (b) with OPC (FCN), and (c) with IPC (U-net), showing 2D
focal spot (left), axial profile (center), and MTF (right; red: measured, blue:
theoretical). (d) Photograph of 4.5 mm IPC metalenses on an 8-inch wafer.
(e) Close-up view showing focal spots under white light illumination.

IPC metalens. These results indicate that both OPC and IPC
enable near-diffraction-limited imaging performance, with
the IPC approach showing comparable optical quality to the
OPC method.

In terms of focusing efficiency, the non-OPC metalens
achieves 42.7 ± 4.2%, while the OPC and IPC metalenses
reach 51.9 ± 0.8% and 50.6 ± 2.0%, respectively, averaged
over three devices per case. These measurements confirm
that CD errors in the non-OPC design introduce optical aber-
rations and reduce both resolution and optical throughput.
In contrast, model-basedOPC and IPC approaches effectively
suppress the CD errors, yielding higher focusing efficiency.
Notably, the OPC metalens benefits from its explicit use of
the optical model, exhibiting slightly higher average effi-
ciency and smaller standard deviation than IPC. Nevertheless,
the IPC approach, enabled by the U-net model, offers key
advantages in terms of model transferability and computa-
tional scalability. As an end-to-end learning-based solution
that does not require complex aerial image simulations, IPC
is more adaptable to different CMOS process nodes and
lithographic conditions.

Scaling the metalens diameter from the millimeter to cen-
timeter results in an exploded number of nano-cylinders to
over billions, posing a significant computational burden for
the model based OPC approach. Moreover, the mask data
size will also be significantly increased, and currently surpass
the capacity our mask shop could handle with a laser beam
reticle writer. In terms of computing time, the IPC (U-net)
takes 2 hours 25min. for correcting a 2mm diameter metalens

FIGURE 6. Top-view SEM images of SiNx nano-cylinders on (a) non-OPC
MOE and (b) IPC MOE devices. Scales are 4µm.The corresponding
reconstructed pattern in the far field from (a) and (b) are shown in
(c) and (d), respectively. (e) and (f) show photographs of customized
patterns from IPC metasurface hologram under green light (532nm)
excitation.

with MPI, which is ∼3 times faster than the OPC (FCN)
approach and ∼35 times faster than the OPC without MPI.
Since IPC metalens can obtain comparable performance to
the OPC metalens, we further design and fabricate 4.5 mm
diameter metalenses on full 8-inch glass wafer, producing
over 1000 pieces of high quality metalenses in a single
photolithographic step (Fig. 5(d) and 5(e)).

The optical characterization of IPC-corrected metalenses
underscores the importance of pattern fidelity in achieving
the intended optical performance. To further demonstrate
the versatility of the IPC system, we extend its application
beyond regular patterns such as metalenses to more complex,
randomly distributed metasurface holograms. Specifically,
we design 1.5 × 1.5 mm2 metasurface holograms that gen-
erate customized far-field diffraction patterns. Partial SEM
images of the fabricated devices are shown in Fig. 6(a) for the
non-IPC case and Fig. 6(b) for the IPC-corrected case. The
IPC approach successfully resolves nanoscale features, par-
ticularly small-diameter nano-cylinders, while the non-IPC
sample exhibits significant CD variation and loss of resolu-
tion. The designed far-field diffraction pattern is a rectangular
shape which is intentionally deflected by 10◦ from the optical
axis to spatially separate it from the DC component caused by
unmodulated light.

Figure 6(c) displays the reconstructed far-field pattern
from the non-IPC device, showing pronounced speckle and
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noise near the DC region. In contrast, the IPC-corrected
device (Fig. 6(d)) exhibits a much cleaner reconstruction with
reduced speckle intensity. These results indicate that while
metasurface holograms are relatively tolerant to phase errors,
unresolved features in the non-IPC sample contribute to an
amplified DC component, degrading beam-shaping perfor-
mance. Figures 6(e) and 6(f) show the photographs of the
customized diffraction patterns produced by the fabricated
metasurface holograms. Notably, the IPC-corrected device
resolves the tri-bar structure in element 3, group 7, which
corresponds to the line-space resolution limit on the design
target. This result demonstrates the robustness and fidelity of
the metasurface design and fabrication with the proposed IPC
system.

Finally, while this work demonstrates wafer-scale fab-
rication of 4.5 mm diameter metalenses and metasurface
holograms, the extension to centimeter-scale devices is cur-
rently limited by the file-handling capacity of our mask shop,
not by the IPC algorithm itself, which already leverages
parallel computing. We also acknowledge that the end-to-end
U-net surrogate lacks the interpretability of physics-based
OPC methods, making it less straightforward to diagnose
failure modes or tune process variations. Nevertheless, the
U-net model effectively reproduces the optics of our prior
FCN model, delivering nearly identical pattern fidelity with
substantially faster convergence. For metasurfaces with lim-
ited pattern diversity, such as those on fixed lattices, the
risk of encountering unseen geometries is low, making the
U-net model approach both robust and practical. In these
cases, speed and simplicity are highly advantageous, allow-
ing deployment in laboratories or foundries without reliance
on costly EDA toolchains. Looking ahead, hybrid frame-
works that embed physics-based constraints or uncertainty
quantification into the neural-network pipeline could pro-
vide a balance between interpretability and computational
efficiency, extending applicability to complex metasurface
patterning.

IV. CONCLUSION
In this work, we introduce an intelligent proximity correction
(IPC) system to facilitate scalable metasurface fabrication
by KrF photolithography. By combining a deep learning
lithographic model with efficient parallel computing strate-
gies, the IPC overcomes the speed and accuracy limitations
of the traditional OPC method. This approach enables the
realization of large-area, high-efficiency metasurfaces using
economical photolithography techniques, opening new pos-
sibilities in the field of flat optics and nano-photonics.
Furthermore, the IPC system highlights an end to end mod-
eling technique without involving complex optical image
calculations. Therefore, the IPC system can be easily adapted
or transferred to different lithography processes, showing its
potential to accelerate the development of next-generation
optical and semiconductor devices through cost-effective,
high-throughput manufacturing.

ACKNOWLEDGMENT
The authors would like to thank the National Center for
High-performance Computing (NCHC), National Institutes
of Applied Research, Taiwan, for computational and storage
resources. They also acknowledge Mr. Richard L. C. Hu,
and Dr. Chenglin Xu, at Synopsys Inc. for their valuable
discussions and technical support.

REFERENCES
[1] N. Yu and F. Capasso, ‘‘Flat optics with designer metasurfaces,’’ Nature

Mater., vol. 13, no. 2, pp. 139–150, Feb. 2014, doi: 10.1038/nmat3839.
[2] S. Jahani and Z. Jacob, ‘‘All-dielectric metamaterials,’’ Nature Nanotech-

nol., vol. 11, no. 1, pp. 23–36, Jan. 2016, doi: 10.1038/nnano.2015.304.
[3] J. Hu, S. Bandyopadhyay, Y.-H. Liu, and L.-Y. Shao, ‘‘A review on meta-

surface: From principle to smart metadevices,’’ Frontiers Phys., vol. 8,
Jan. 2021, Art. no. 586087, doi: 10.3389/fphy.2020.586087.

[4] M. K. Chen, Y. Wu, L. Feng, Q. Fan, M. Lu, T. Xu, and D. P. Tsai, ‘‘Prin-
ciples, functions, and applications of optical meta-lens,’’ Adv. Opt. Mater.,
vol. 9, no. 4, Feb. 2021, Art. no. 2001414, doi: 10.1002/adom.202001414.

[5] A. Arbabi and A. Faraon, ‘‘Advances in optical metalenses,’’ Nature
Photon., vol. 17, no. 1, pp. 16–25, Jan. 2023, doi: 10.1038/s41566-022-
01108-6.

[6] A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, ‘‘Large area
metalenses: Design, characterization, andmass manufacturing,’’Opt. Exp.,
vol. 26, no. 2, pp. 1573–1585, 2018, doi: 10.1364/oe.26.001573.

[7] S. Colburn, A. Zhan, and A. Majumdar, ‘‘Varifocal zoom imaging with
large area focal length adjustable metalenses,’’ Optica, vol. 5, no. 7,
pp. 825–831, 2018, doi: 10.1364/optica.5.000825.

[8] H. Cheng, Z. Tang, L. Wu, C. Peng, and J. Sun, ‘‘CMOS-compatible A—
Si metalenses on a 12-inch glass wafer for fingerprint imaging,’’ Nature
Commun., vol. 13, no. 1, pp. 4789–4796, 2022, doi: 10.1515/nanoph-2019-
0470.

[9] Y. Yang, K. Kelley, J. D. B. Yao, and F. Capasso, ‘‘All-glass,
large metalens at visible wavelength using deep-ultraviolet projection
lithography,’’ Nature Commun., vol. 11, no. 1, pp. 2300–2310, 2020,
doi: 10.1021/acs.nanolett.9b03333.

[10] P. Yu, ‘‘True process variation aware optical proximity correction
with variational lithography modeling and model calibration,’’ J.
Micro/Nanolithography, MEMS, MOEMS, vol. 6, no. 3, Jul. 2007,
Art. no. 031004, doi: 10.1117/1.2752814.

[11] S. Palatnick, D. John, and M. Millar-Blanchaer, ‘‘Investigating pathways
for deep-UV photolithography of large-area nanopost-based metasurfaces
with high feature-size contrast,’’ J. Vac. Sci. Technol. B, vol. 42, no. 6,
Dec. 2024, Art. no. 062602, doi: 10.1116/6.0003947.

[12] N. B. Cobb, A. Zakhor, and E. A. Miloslavsky, ‘‘Mathematical and CAD
framework for proximity correction,’’ Proc. SPIE, vol. 2726, pp. 208–222,
Jun. 1996, doi: 10.1117/12.240907.

[13] X. Ma, Z. Wang, Y. Li, G. R. Arce, L. Dong, and J. Garcia-Frias,
‘‘Fast optical proximity correction method based on nonlinear compres-
sive sensing,’’ Opt. Exp., vol. 26, no. 11, pp. 14479–14498, 2018, doi:
10.1364/oe.26.014479.

[14] N. Cobb, ‘‘Fast optical and process proximity correction algorithms for
integrated circuit manufacturing,’’ Ph.D. dissertation, Dept. Elect. Eng. and
Comput. Sci., Univ. of California, Berkeley, CA, USA, 1998.

[15] X. Ma and G. R. Arce, ‘‘Pixel-based OPC optimization based on con-
jugate gradients,’’ Opt. Exp., vol. 19, no. 3, pp. 2165–2180, 2011, doi:
10.1364/oe.19.002165.

[16] Y. Lin, Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima, M. Li, and
D. Z. Pan, ‘‘Data efficient lithography modeling with residual neural net-
works and transfer learning,’’ in Proc. Int. Symp. Phys. Design, Mar. 2018,
pp. 82–89, doi: 10.1145/3177540.3178242.

[17] H.-C. Shao, C.-Y. Peng, J.-R. Wu, C.-W. Lin, S.-Y. Fang, P.-Y. Tsai,
and Y.-H. Liu, ‘‘From IC layout to die photograph: A CNN-based data-
driven approach,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 40, no. 5, pp. 957–970, May 2021, doi: 10.1109/TCAD.2020.
3015469.

[18] A. Lin, T. Rawat, C.-Y. Chang, H.-C. Tung, H.-L. Liu, and P. Yu,
‘‘Optical proximity correction using machine learning assisted human
decision,’’ IEEE Photon. J., vol. 15, no. 1, pp. 1–9, Feb. 2023, doi:
10.1109/JPHOT.2022.3231426.

VOLUME 13, 2025 195523

http://dx.doi.org/10.1038/nmat3839
http://dx.doi.org/10.1038/nnano.2015.304
http://dx.doi.org/10.3389/fphy.2020.586087
http://dx.doi.org/10.1002/adom.202001414
http://dx.doi.org/10.1038/s41566-022-01108-6
http://dx.doi.org/10.1038/s41566-022-01108-6
http://dx.doi.org/10.1364/oe.26.001573
http://dx.doi.org/10.1364/optica.5.000825
http://dx.doi.org/10.1515/nanoph-2019-0470
http://dx.doi.org/10.1515/nanoph-2019-0470
http://dx.doi.org/10.1021/acs.nanolett.9b03333
http://dx.doi.org/10.1117/1.2752814
http://dx.doi.org/10.1116/6.0003947
http://dx.doi.org/10.1117/12.240907
http://dx.doi.org/10.1364/oe.26.014479
http://dx.doi.org/10.1364/oe.19.002165
http://dx.doi.org/10.1145/3177540.3178242
http://dx.doi.org/10.1109/TCAD.2020.3015469
http://dx.doi.org/10.1109/TCAD.2020.3015469
http://dx.doi.org/10.1109/JPHOT.2022.3231426


H.-L. Liu et al.: IPC Enabled Large-Area Metasurfaces by KrF Photolithography

[19] D. Gostimirovic, Y. Grinberg, D.-X. Xu, and O. Liboiron-Ladouceur,
‘‘Improving fabrication fidelity of integrated nanophotonic devices using
deep learning,’’ ACS Photon., vol. 10, no. 6, pp. 1953–1961, Jun. 2023,
doi: 10.1021/acsphotonics.3c00389.

[20] V. Joshi,M. LeGallo, S. Haefeli, I. Boybat, S. R. Nandakumar, C. Piveteau,
M. Dazzi, B. Rajendran, A. Sebastian, and E. Eleftheriou, ‘‘Accurate deep
neural network inference using computational phase-change memory,’’
Nature Commun., vol. 11, no. 1, p. 2473, May 2020, doi: 10.1038/s41467-
020-16108-9.

[21] X. Zheng, X. Ma, Q. Zhao, Y. Pan, and G. R. Arce, ‘‘Model-informed
deep learning for computational lithography with partially coherent illu-
mination,’’ Opt. Exp., vol. 28, no. 26, pp. 39475–39491, Dec. 2020, doi:
10.1364/oe.413721.

[22] D. Gostimirovic, D.-X. Xu, O. Liboiron-Ladouceur, and Y. Grinberg,
‘‘Deep learning-based prediction of fabrication-process-induced struc-
tural variations in nanophotonic devices,’’ ACS Photon., vol. 9, no. 8,
pp. 2623–2633, Aug. 2022, doi: 10.1021/acsphotonics.1c01973.

[23] R. Zhao, Y. Wei, X. Wang, X. He, and H. Xu, ‘‘Convolutional neural
network-assisted photoresist formulation discriminator design of a contact
layer for electron beam lithography,’’ J. Phys. Chem. Lett., vol. 15, no. 34,
pp. 8715–8720, Aug. 2024, doi: 10.1021/acs.jpclett.4c01911.

[24] W.-P. Liao, H.-L. Liu, Y.-F. Lin, S.-S. Su, Y.-T. Chen, G.-B. Lin,
T.-C. Tseng, T.-K. Lin, C.-C. Chen, W.-H. Huang, S.-W. Chen,
J.-M. Shieh, P. Yu, and Y.-C. Chang, ‘‘I-line photolithographic metalenses
enabled by distributed optical proximity correction with a deep-learning
model,’’ Opt. Exp., vol. 30, no. 12, pp. 21184–21194, 2022, doi:
10.1364/oe.456469.

[25] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional net-
works for biomedical image segmentation,’’ in Proc. Med. Image Comput.
Comput.-Assist. Intervent., 2015, pp. 234–241, doi: 10.1007/978-3-319-
24574-4_28.

[26] J. S. Suri, M. Bhagawati, S. Agarwal, S. Paul, A. Pandey, S. K. Gupta,
L. Saba, K. I. Paraskevas, N. N. Khanna, J. R. Laird, A. M. Johri,
M. K. Kalra, M. M. Fouda, M. Fatemi, and S. Naidu, ‘‘UNet deep learning
architecture for segmentation of vascular and non-vascular images: A
microscopic look at UNet components buffered with pruning, explainable
artificial intelligence, and bias,’’ IEEE Access, vol. 11, pp. 595–645, 2023,
doi: 10.1109/ACCESS.2022.3232561.

[27] A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and
A. Majumdar, ‘‘Low-contrast dielectric metasurface optics,’’ ACS Photon.,
vol. 3, no. 2, pp. 209–214, Feb. 2016, doi: 10.1021/acsphotonics.5b00660.

[28] Z. Lin and S. G. Johnson, ‘‘Overlapping domains for topology optimization
of large-area metasurfaces,’’ Opt. Exp., vol. 27, no. 22, pp. 32445–32453,
Oct. 2019, doi: 10.1364/oe.27.032445.

[29] V. Kettunen, ‘‘Review of iterative Fourier-transform algorithms for
beam shaping applications,’’ Opt. Eng., vol. 43, no. 11, pp. 2549–2556,
Nov. 2004, doi: 10.1117/1.1804543.

[30] Y. Wu, J. Wang, C. Chen, C.-J. Liu, F.-M. Jin, and N. Chen, ‘‘Adaptive
weighted gerchberg-saxton algorithm for generation of phase-only holo-
gram with artifacts suppression,’’ Opt. Exp., vol. 29, no. 2, p. 1412, 2021,
doi: 10.1364/oe.413723.

[31] S. Liu and Y. Takaki, ‘‘Optimization of phase-only computer-generated
holograms based on the gradient descent method,’’ Appl. Sci., vol. 10,
no. 12, p. 4283, Jun. 2020, doi: 10.3390/app10124283.

[32] M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh,
I. Mishra, R. C. Devlin, and F. Capasso, ‘‘Polarization-insensitive metal-
enses at visible wavelengths,’’ Nano Lett., vol. 16, no. 11, pp. 7229–7234,
Nov. 2016, doi: 10.1021/acs.nanolett.6b03626.

HSUEH-LI LIU received the bachelor’s degree
in photonics from National Yang Ming Chiao
Tung University, in 2019, where he is currently
pursuing the Ph.D. degree. His research focuses
on metasurface optics, photolithography, optical
proximity correction (OPC), and the application
of deep neural networks for lithography model-
ing and computational acceleration. In particular,
he explores data-driven techniques for layout-
to-image prediction and OPC mask optimization

using deep-learning models. He is a Student Member of SPIE and has
received multiple research awards in Taiwan.

SHENG-HSIANG SU received the M.S. degree
in photonics from National Yang Ming Chiao
Tung University, Taiwan, in 2022. He published
his work through SPIE and was a SPIE Student
Member during his graduate studies. In the
same year, he joined the OPC mask correction
development division with Taiwan Semiconductor
Manufacturing Company (TSMC) as a Lithog-
raphy Engineer, working on inverse lithography
correction and AI-based lithography modeling.

His research focused on resolution enhancement techniques, intelligent
proximity correction, and AI-based lithography modeling.

PO-KAI CHANG is currently pursuing the Ph.D.
degree with National Yang Ming Chiao Tung Uni-
versity. His research focuses on computational
lithography and metasurfaces. He works on opti-
mizing lithography techniques through numerical
simulations and explores the applications and
fabrication processes of metasurfaces in opti-
cal components, offering innovative solutions for
semiconductor processes and optical technologies.
He has been a SPIE Student Member, since 2024.

YOU-CHIA CHANG was born in Taichung,
Taiwan, in 1981. He received the Ph.D. degree in
applied physics from the University of Michigan,
in 2016. From 2016 to 2018, he was a Postdoc-
toral Research Scientist with the Department of
Electrical Engineering, Columbia University, New
York, USA. In 2018, he joined the Department of
Photonics, National Yang Ming Chiao Tung Uni-
versity, Hsinchu, Taiwan, where he is currently an
Associate Professor. His research interests include

silicon photonics metamaterials/metasurfaces, and two-dimensional materi-
als. He was a recipient of the JadeMountain (Yushan) Young Scholar Award.

YAO-WEI HUANG (Member, IEEE) received the
Ph.D. degree in applied physics from National
Taiwan University, with expertise spanning
nanophotonics, materials science, nanofabrication,
and nanotechnology. He is currently an Asso-
ciate Professor of photonics and a Yushan Young
Scholar with National Yang Ming Chiao Tung
University (NYCU). He has extensive research
experience from prestigious institutions, such as
Harvard, Caltech, and NUS. His research focuses

on cutting-edge topics, such as nanophotonics, metasurfaces, meta-optics,
inverse design, nonlocal effects, structured light, dispersion engineering, and
computational visual sensing, with innovative applications in extended real-
ity and depth perception. His work aims to advancemetasurface technologies
to benefit human well-being. He is also a fellow of the Higher Education
Academy (HEA) and a SPIE Senior Member. He received the Dean’s Award
from National Taiwan University, during his Ph.D. studies.

195524 VOLUME 13, 2025

http://dx.doi.org/10.1021/acsphotonics.3c00389
http://dx.doi.org/10.1038/s41467-020-16108-9
http://dx.doi.org/10.1038/s41467-020-16108-9
http://dx.doi.org/10.1364/oe.413721
http://dx.doi.org/10.1021/acsphotonics.1c01973
http://dx.doi.org/10.1021/acs.jpclett.4c01911
http://dx.doi.org/10.1364/oe.456469
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/ACCESS.2022.3232561
http://dx.doi.org/10.1021/acsphotonics.5b00660
http://dx.doi.org/10.1364/oe.27.032445
http://dx.doi.org/10.1117/1.1804543
http://dx.doi.org/10.1364/oe.413723
http://dx.doi.org/10.3390/app10124283
http://dx.doi.org/10.1021/acs.nanolett.6b03626


H.-L. Liu et al.: IPC Enabled Large-Area Metasurfaces by KrF Photolithography

CHIA-WEI CHANG received the B.S. degree in
photonics from Feng Chia University, Taichung,
Taiwan. He is currently pursuing the M.S. degree
in electro-optical engineering with National Yang
Ming Chiao Tung University, Hsinchu, Taiwan.
He has worked with United Microelectronics
Corporation, Hsinchu, and Giga Solution Tech.
Company Ltd., Hsinchu. He is currently with
the Taiwan Semiconductor Research Institute,
Hsinchu. His research interests include MEEF and

OPC modeling, lithography process optimization, and metasurface-based
optical system design.

TSAI-MING HUANG received the M.S. degree in
materials science and engineering from National
Tsing Hua University, Taiwan, in 2000. He was
with TSMC, from 2011 to 2020, on advanced
lithography for embedded flash and MRAM.
He is currently a Lithography Process Engineer
with Taiwan Semiconductor Research Institute,
National Institute of Applied Research (TSRI/
NIAR), focusing on DUV lithography, OPC, and
novel channel materials.

CHUN-CHI CHEN received the B.S. and M.S.
degrees in atomic science from National Tsing
Hua University, Taiwan, in 1998 and 2000, respec-
tively, and the Ph.D. degree in materials science
and engineering from National Yang Ming Chiao
Tung University, Taiwan, in 2013. Since 2018,
he has been with Taiwan Semiconductor Research
Institute (TSRI), National Applied Research Lab-
oratories, where he serves as the Group Leader
of the Photomask Lithography Team. His research

interests include photoresist materials, exposure systems, lithography pro-
cess development, and resolution enhancement technologies.

WEN-HSIEN HUANG received the Ph.D. degree
inmaterials science and engineering fromNational
Yang Ming Chiao Tung University, Taiwan. He is
a Research Fellow and the Division Director
of semiconductor thin-film deposition and etch
modules with Taiwan Semiconductor Research
Institute (TSRI), National Institutes of Applied
Research. His research focuses on low thermal
budget technologies for semiconductor materials
and devices, including plasma Si/Ge/SiGe thin-

film deposition, laser crystallization and laser dopant activation, which are
widely employed in applications of Si-based monolithic 3DIC, glass-based
TFT and flexible transistors. Furthermore, his recent research extends to GaN
epitaxy and high-frequency GaN-HEMT fabrication.

JIA-MIN SHIEH received the Ph.D. degree in
electro-optics from National Yang Ming Chiao
Tung University, Taiwan, in 1997. In 1998,
he joined National Nano Device Laboratories
(NDL), Taiwan, and became aResearcher, in 2003.
Currently, he is a Senior Research Fellow with
TSRI (former NDL). His academic interests
include flexible electronics, advanced CIM mem-
ories, and heterogeneously integrated 3D ICs. His
team is engaged in developing flexible electronics,

low-cost TSV-free monolithic 3D-ICs, energy-saving MEMS sensors, and
advanced memory technology.

PEICHEN YU (Member, IEEE) received the Ph.D.
degree in electrical engineering from the Univer-
sity of Michigan, Ann Arbor, MI, USA, in 2004.
From 2004 to 2006, she joined the Advanced
Design Group, Intel Corporation, Hillsboro, OR,
USA, as a Resolution Enhancement Technology
(RET) Design Engineer. Since 2006, she switched
careers to academia and is currently a Professor
with the Department of Photonics, National Yang
Ming Chiao Tung University. Her research inter-

ests include nanostructures and metasurfaces patterning for optoelectronic
applications. She is also actively engaged in the development of RET solu-
tions, including inverse lithography technology (ILT) for ArF 193i and EUV
lithography. She has published over 60 refereed technical articles in the
above research areas. Her work has been highlighted in various scientific
journals, including Virtual Journal of Nanoscale Science and Technology,
SPIE Newsroom, and NPG Nature Asia-Material. She is also a member of
the IEEE Photonics Society and SPIE. She received several research and
teaching awards in Taiwan.

VOLUME 13, 2025 195525


